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TECHNICAL NOTE

Quantifying stress-induced anisotropy using inter-void constrictions

T. SHIRE�, C . O’SULLIVAN�, D. BARRETO† and G. GAUDRAY‡

In particulate geomechanics it is common to quantify fabric anisotropy using contact and particle
orientations. Measurement of void anisotropy is less common, most likely owing to the difficulties
associated with defining individual voids. Here a Delaunay tessellation-based approach is applied to
measure anisotropy of the inter-void constriction orientations. This new measure of fabric anisotropy
was capable of identifying stress-induced anisotropy in discrete-element modelling true triaxial
simulations with spherical particles. A relationship is established between the constriction orientations,
the macro-scale principal stress directions and the micro-scale contact normal orientations.

KEYWORDS: anisotropy; discrete-element modelling; fabric/structure of soils

INTRODUCTION
Soil anisotropy in a soil is either inherent or induced (e.g.
Casagrande & Carillo, 1944). Typically geomechanics obser-
vations of anisotropy have focused on the overall material
behaviour, that is the strength (e.g. Arthur & Menzies,
1972), stiffness (e.g. Kuwano & Jardine, 2002) and per-
meability (e.g. Chan & Kenney, 1973). These observations
of macro-scale material response are manifestations of a
particle-scale fabric anisotropy. Using particle-scale data the
fabric can be quantified using the following data sets (Oda
et al., 1985; Fonseca, 2011)

(a) contact normal orientations
(b) particle orientations
(c) void orientations
(d ) branch vector orientations.

Earlier studies quantifying fabric and relating it to the
overall material response have mostly used data from photo-
elastic tests and discrete-element modelling (DEM) simula-
tions (e.g. Oda et al., 1985; Thornton, 2000; Ng, 2001), and
have considered mainly the particle or contact orientations.
In contrast, studies of void orientation anisotropy have been
less common, especially for three-dimensional (3D) granular
materials. This is probably a consequence of the difficulty in
identifying individual voids within a continuous 3D void
space. Fonseca (2011) applied watershed segmentation and
principal component analysis to identify void orientations in
3D micro-computed tomography images of sand samples. In
two dimensions, Ghedia & O’Sullivan (2012) also used
watershed segmentation to extend the scan-line method
proposed by Oda et al. (1985). Descriptions of techniques to
measure anisotropy, including void anisotropy, from two-
dimensional (2D) scanning electron microscope (SEM)
images of clay samples can be found in Smart (1991) and
Tovey et al. (1992), among other references.

This technical note presents a new method for measuring
void anisotropy using the inter-void constrictions, that is the
‘throats’ between two distinct voids. This void constriction
anisotropy is calculated for a DEM dataset in which aniso-
tropy was stress induced. The void constriction and contact
normal anisotropies are compared. This new measure of
fabric provides additional insight into the particle-scale
material response to deviatoric stress.

ALGORITHM
The Delaunay tessellation-based algorithm used here was

originally proposed by Reboul (2008) and Reboul et al.
(2010). In this algorithm a set of tetrahedra formed by a
Delaunay tessellation of the particle centroids is used. The
inter-void constrictions are identified using the faces of these
tetrahedra (Fig. 1). On each face the constriction diameter is
taken to be the diameter of the smallest circle that can be
inscribed on that face between the three particles that form
that face. A further check is applied to ensure that this circle
does not overlap with any other particle that intersects the
tetrahedron face.

In order to avoid the over-segmentation of void space,
adjacent tetrahedra may be merged using a criterion pro-
posed by Al-Raoush et al. (2003). The scheme can be
understood by reference to a simple two-dimensional (2D)
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Fig. 1. Description of void characteristics using Delaunay cell



scenario of uniform particles on a square grid, as illustrated
in Fig. 2. Fig. 2(a) illustrates the constriction locations. The
Delaunay triangulation to identify the voids is presented in
Fig. 2(b). As illustrated in Fig. 2(c) if circles are fitted to
each of these edge gaps the voids are essentially over
segmented; in other words, a space that would intuitively be
considered a single void is subdivided. As illustrated in Fig.
2(d), spheres that are tangential to each of the particles
forming a Delaunay cell are identified. Then the overlap
between this sphere and each of the spheres in adjacent
Delaunay cells is calculated and, if this overlap exceeds a
user-specified value, the cells are merged to form a single
void cell (Al-Raoush et al., 2003; Reboul, 2008). The choice
of overlap is subjective; a smaller critical overlap results in
the formation of fewer, larger voids. An overlap criterion of
O ¼ 50% is used here, calculated as

O ¼ x1 � x2

min r1, r2ð Þ
3 100 (1)

where x1, x2 and r1, r2 are the centroidal positions and radii
of two adjacent inscribed spheres. This method suffers from
the same drawback as the watershed segmentation approach
used by Fonseca (2011); that is the larger constrictions
identified may not be real void boundaries, but narrow points
within valid voids. It is important to realise that in a soil
sample with interconnected voids the exact definition of
boundaries between all voids in the system will always be
subjective and over-segmentation of the void space is likely,
whatever method is used.

This approach does not generate information on the
topology of the real pores, but rather coordinates of the
vertices of the particles surrounding a void are given, and
these particles are considered to form a ‘void cell’. To
describe the true void geometry it would be necessary to

consider the segments of the surfaces of the spheres that
intersect the void cell faces, which is a non-trivial operation.
Here full information on the constrictions is, however, avail-
able. To assess the void fabric, the algorithm was therefore
extended to measure the constriction orientations by record-
ing the Cartesian unit vectors normal to the constriction face
(Gaudray, 2011). The algorithm implementation was success-
fully validated using regular packings of uniform spheres,
for which analytical expressions for constriction size and
orientations are known.

DEM SIMULATIONS
In the current study ten virtual DEM samples from

simulations detailed by Barreto (2009) and Barreto & O’Sul-
livan (2012) were analysed, as listed in Table 1. The PSD of
the spheres matched physical glass bead samples, and is
given in Fig. 3 for percentage smaller both by number and
volume. The samples were created by generating a cloud of
non-contacting spheres with random locations within a peri-
odic cell. The samples were compressed isotropically and
monotonically to a mean normal stress of 200 kPa, following
which a series of strain-controlled, constant mean stress,
constant intermediate principal stress ratio, true triaxial com-
pression tests were performed. The intermediate stress ratio
is defined as

b ¼ �2 � �3

�1 � �3

(2)

where �1, �2 and �3 are the major, intermediate and minor
principal stresses. The series included tests with �1 ¼ �2

(b ¼ 1) and �2 ¼ �3 (b ¼ 0) and these are referred to as
triaxial compression (TXC) and triaxial extension (TXE)
respectively. Tests with b ¼ 0.4 that had approximately plane

Particle

Constriction

Delaunay triangulation based
on particle centroids

(b)

False identification
due to over-segmentation
of void space

Correct constriction
locations

(c)

Spheres tangent to
particles forming
Delaunay cell

Overlap distance used to assess whether
Delaunay cells should be merged

(d)

(a)

Fig. 2. Merging of Delaunay cells to form voids (adapted from Al-Raoush et al. (2003))
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strain conditions (�2 , 0.05%) are also presented and re-
ferred to as PS. Each test series was repeated using three
coefficients of inter-particle friction, � ¼ 0.14, 0.325 and
0.7. The sample void ratios increased with �. All samples
dilated during shearing from the isotropic state. The results
presented in this paper consider the fabric anisotropy at 10%
deviatoric strain (�d), where

�d ¼
2ffiffiffi
6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 � �2ð Þ2 þ �2 � �3ð Þ2 þ �3 � �1ð Þ2

q
(3)

and �1, �2 and �3 are the major, intermediate and minor
principal strains.

The void ratio, e, and deviatoric stress, J, values for the
samples considered are presented in Table 1, where

J ¼ 1ffiffiffi
6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 91 � � 92ð Þ2 þ � 92 � � 93ð Þ2 þ � 93 � � 91ð Þ2

q
(4)

and � 91, � 92 and � 93 are the major, intermediate and minor
principal effective stresses. Fig. 4 illustrates the variation in
J with �d for the simulation with � ¼ 0.325. The peak angles
of shearing resistance (j9peak ¼ sin�1[(� 91 � � 93)=(� 91 þ � 9)])
for each simulation are listed in Table 1. As discussed
further by Barreto & O’Sullivan (2012) and Barreto (2009)
the observed material response is in line with previous DEM
and experimental studies. As the samples are relatively
dense with a relatively uniform particle size distribution,
there is an initial stiff response. Such a response is typical

for this type of sample and is termed a type 1 response by
Roux & Combe (2010). A similar initial stiff response was
noted by Ng (2004a) in his true triaxial DEM simulations
using ellipsoidal particles and by Thornton (2000) using
spherical particles. The pattern of variation in j9peak with b
is similar to those reported in experimental studies of
Sutherland & Mesdary (1969) and Haruyama (1981) and
also to the DEM simulations of Ng (2004b). Additionally,
the DEM true triaxial studies of Thornton (2000), Ng
(2004a) and Barreto & O’Sullivan (2012) have been com-
pared against the Lade & Duncan (1973) failure criterion in
terms of failure stress state and have demonstrated a reason-
able agreement.

RESULTS
The constriction size distributions (CSDs) by percentage

number smaller for � ¼ 0.325 are included in Fig. 3. In
comparison with the initial, isotropic stress state, the con-
striction diameters generally increased during shearing. This
is unsurprising given that all the samples underwent dilation,
leading to an increase in void space. The CSDs at �d ¼ 10%
for each shearing mode are similar.

The fabric anisotropy is quantified using the unit vectors
normal to the constrictions and the inter-particle contacts
and applying the fabric tensor as defined by Satake (1982)
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Table 1. Macroscopic variables for true-triaxial samples analysed

Sample Coefficient of interparticle
friction, �

Void ratio, e,
at �d ¼ 10%

Deviatoric stress, J:
kPa at �d ¼ 10%

j9peak

Triaxial compression 0.14 0.562 87 21.92
0.325 0.572 101 26.71
0.70 0.581 101 28.44

Triaxial extension 0.14 0.559 74 24.17
0.325 0.568 85 29.35
0.70 0.576 85 31.01

Plane strain 0.14 0.560 81 26.25
0.325 0.570 94 31.92
0.70 0.577 92 33.72

Isotropic compression All values 0.529 0 N/A
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�ij ¼
1

N

XN

k¼1

nk
i nk

j (5)

where N is the total number of vectors and nk
i is the kth

unit orientation vector. Just as in the case of the stress
tensor, the principal components of the fabric tensor (�1,
�2, �3), can be obtained through eigenvalue analysis. The
3D deviatoric fabric, �d, can be calculated using the follow-
ing invariant as proposed by Barreto et al. (2009)

�d ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 ��2ð Þ2 þ �2 ��3ð Þ2 þ �3 ��1ð Þ2

q
(6)

Table 2 gives data on the deviatoric fabric for both inter-
particle contacts and inter-void constrictions for each test at
�d ¼ 10%. Three values for the constriction �d are given
considering

(a) all constrictions
(b) constrictions with diameterdc , dc50 (dc50 is the median dc)
(c) the smallest 15% of constrictions, having dc , dc15:

Quantifying fabric using the smaller constrictions removes
the uncertainty associated with the larger constrictions,
which may represent local narrowing of voids, rather than

being valid void–void boundaries. The overall constriction
distribution shows little fabric anisotropy. However, anisotro-
py increases markedly as a smaller range of constrictions is
considered. The intensity of the constriction anisotropy for
the range dc , dc15 is related to the shearing mode in the
order TXE . PS . TXC. The volumetric strain data indicate
that no sample is at a critical state at this strain level.

The directional distribution of contacts and constrictions
can be visualised using 2D rose histograms. Here each
histogram bin represents an angular interval in a plane
normal to a principal stress direction and each bin is shaded
according to the average magnitude of its members. In each
test the z-direction corresponds to �1, y-direction to �2 and
x-direction to �3 (note that in triaxial compression �2 ¼ �3

and in extension �1 ¼ �2). A fabric ellipsoid calculated using
the Fourier series (Rothenburg & Bathurst, 1989; Barreto et
al., 2008) has been fitted to each set of histogram data for
all the constrictions, for constrictions with dc , dc15 and for
the contact normals and are presented in Figs 5, 6 and 7 for
TXC, PS and TXE respectively.

Figure 5 shows that the contact normals are preferentially
oriented in the �1 direction (z-direction) and the average
contact force is largest in the �1 direction. No preferential
direction of the overall constriction numbers can be seen in
any direction (the fabric ellipsoids in Figs 5(d)–5(f) are all
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approximately circular). This agrees with the low deviatoric
fabric values in Table 2. However, anisotropy is observed in
the average diameter of the constrictions, with larger average
constrictions found in the �1 direction. Figs 5(g)–5(i) show

that the smallest constrictions are preferentially aligned away
from the �1 direction. Similar patterns can be observed for
plane strain and triaxial extension in Figs 6 and 7 respec-
tively, with preferential orientation of inter-particle contacts
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Table 2. Deviatoric fabric for true-triaxial samples: �d 10%

Sample Coefficient of
interparticle
friction, �

Constriction
deviatoric fabric
(all constriction

normals)

Constriction
deviatoric fabric

(dc , dc50

constriction
normals)

Constriction
deviatoric fabric

(dc , dc15

constriction
normals)

Contact normal
deviatoric fabric

(all particles)

Deviatoric
strain, �d: %

Triaxial compression 0.14 0.003 0.025 0.069 0.111 10
0.325 0.006 0.024 0.071 0.137 10
0.70 0.004 0.028 0.072 0.152 10

Plane strain 0.14 0.005 0.031 0.110 0.122 10
0.325 0.005 0.033 0.116 0.144 10
0.70 0.005 0.035 0.117 0.151 10

Triaxial extension 0.14 0.005 0.034 0.131 0.120 10
0.325 0.007 0.036 0.131 0.144 10
0.70 0.004 0.039 0.146 0.159 10

Isotropic compression All values 0.005 0.005 0.019 0.007 0
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and larger average constrictions in the direction of the larger
principal stress in that plane, and smaller constrictions
preferentially orientated orthogonal to this in the direction of
the smaller principal stress.

Oda et al. (1985) showed that during biaxial compression
of photoelastic rods voids become elongated with the void
long axis aligned in the �1 direction. The data presented
here support this observation for a 3D material. Referring
to the schematic diagram presented in Fig. 8, the larger
constrictions have contact normals orientated in the vertical
direction. This indicates that voids are opening up between
quasi-parallel strong force chains that transmit the deviato-
ric stress through the sample. The prevalence of small
constrictions with normals orthogonal to the major principal
stress direction reflects the presence of void boundaries that
are clearly defined at the strong force chains. Note that
while force chains are sometimes associated with shear
bands (e.g. experimental work of Rechenmacher et al.
(2010)), force chains, which represent a preferential orienta-
tion in the contact normals, can form even at very low
strain levels, provided there is an anisotropic stress state.
Graphical evidence of this can be found in Rothenburg &
Bathurst (1989) and Behringer et al. (2008), among many
others. As the current simulations were carried out in a
periodic cell, the development of shear bands that can

occur in physical tests is inhibited (e.g. see Thornton
(2000)).

Considering the data presented in Figs 5–7 and Table 2,
the contact normal orientations are clearly a more sensitive

XY plane

300

1·2

1·0

0·8X

Y

YZ plane

300

1·1

1·0

0·9
X

Z

XZ plane

300

1·2

1·0

0·8

0·6

1·4

Y

Z

X

Y

X

Z

Y

Z

X

Y

X

Z

Y

Z

XY plane

0·695

0·690100

XZ plane

0·700

100
0·695

YZ plane

100

0·700

0·695

0·705

(a) (b) (c)

(e) (f)(d)

(h) (i)(g)

XY plane

1·06

1·08

1·04

1·02

200

400

1·10

XZ plane

1·04

1·02

1·06

200

400

1 10·

1·08

YZ plane

200

400

1·04

1·03

1·06

1·07

1·05

0·710

0·705

0·700

0·705

0·710

Fig. 7. Rose histograms for triaxial extension sample at �d 10%: (a)–(c) particle contact normals; (d)–(f) all constriction normals;
(g)–(i) constriction normals dc < dc15: Shading indiates average: (a)–(c) normalised contact force f N/<N>; (d)–(i) normalised
constriction diameter dc/dc50

Elongated void parallel
to major principal stress

Large constriction
perpendicular to void
long axis

Smaller
constriction
parallel to void
long axis

Fig. 8. Conceptual model of void elongation

90 SHIRE, O’SULLIVAN, BARRETO AND GAUDRAY



indicator of stress-induced fabric changes than the void
topologies, measured here by considering the constriction
sizes. Prior quantitative analysis of void fabric using a
scanning line method was discussed by Oda et al. (1985)
(using experimental data) and Ghedia & O’Sullivan (2012)
(using DEM data). Both sets of authors compared the ratio
of the maximum and minimum eigenvalues for the contact
normals and the voids (termed F1/F2 and V1/V2 respectively
in both cases). Both authors found the maximum change in
void fabric (i.e. the maximum change in V1/V2) was less than
the maximum change in contact normal fabric (i.e. the
maximum change in F1/F2). While the current data cannot
be directly compared with these prior 2D studies that con-
sidered the entire void topology, it is important to note the
similarity of the trends.

CONCLUSIONS
While a number of studies have quantified fabric aniso-

tropy using particle and contact normal orientations, less
consideration has been given to the void phase, probably
because of the difficulty associated with defining voids
and in particular identifying void boundaries. Here fabric
anisotropy was quantified using the inter-void constrictions
orientations. The algorithm proposed by Reboul (2008)
was used. Data obtained in a series of constant mean
stress, true triaxial DEM simulations with stress-induced
anisotropy were analysed. The following observations were
made.

(a) The average constriction diameter is larger in the
direction of the major principal stress. The larger average
constrictions are aligned with a higher concentration of
inter-particle contact normals.

(b) Smaller constrictions (dc , dc15) show a preferential
orientation away from the major principal stress
direction. It is believed that the preferential orientation
of the larger constrictions in the �1 and smaller
constrictions in the �3 directions is because of stress-
induced void elongation. Quantifying fabric using the
smaller constrictions removes the uncertainty associated
with the larger constrictions, which may represent local
narrowing of voids, rather than being valid void–void
boundaries.

(c) The constriction size distributions are similar for each
shearing mode. However, the intensity of constriction
anisotropy, measured by the deviatoric fabric �d,
increases in the order TXE . PS . TXC.
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